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1 Introduction and a summary 

The advent of NGS technologies had a tremendous effect on almost all imaginable scientific 

applications. Specially the reduction of costs over the years (Metzker 2010) has accelerated the 

use of this technology on metagenomics experiments (Simon and Daniel 2011, Thomas, Gilbert et 

al. 2012). Phylogenetic survey analyses based on 16S gene diversity has been fundamental on 

identification of bacterial varieties (Caporaso, Lauber et al. 2011, Kuczynski, Stombaugh et al. 

2011, Clifford, Milillo et al. 2012). This sequencing revolution in conjunction with high performance 

computing and recently developed computing tools has had a tremendous impact on new 16S gene 

studies (Tringe and Hugenholtz 2008, Caporaso, Lauber et al. 2011). This analysis, as part of the 

2017 CAMDA competition is focused on the MetaSUB Challenge dataset. We undertake a number of 

investigations for the OTU count data at the taxonomic level “Order” across the three cities. First, a 

PCA analysis showed a clear clustering of the data points for the three cities, where a large 

proportion of variability was explained by the first three principal components. Next we attempted 

to build a classifier using the OTU count data and were successful in achieving very high specificity 

and sensitivity. The relative abidance patterns of the OTUs varied significantly across the city, 

which was formally confirmed by an analysis of variance. Finally, we conduct a network analysis 

based on the co-abundance patterns the OTUs in a given city. Overall, we found finding different 

patterns in the three networks when inspected visually; the networks of close by cities showed 

similar bacterial co-abundance patterns compared to distant cities. 

2 MetaSUB Organization Dataset 

For the 2017 meeting, CAMDA has partnered with the MetaSUB (Metagenomics & Metadesign of 

Subways & Urban Biomes) International Consortium (http://metasub.org/), which has provided 

data from 3 cities across the United States as part of the MetaSUB Inter-City Challenge.  

Next generation sequencing data was generated from 

DNA samples taken on subway stations from Boston, 

New York and Sacramento in the form of FASTQ files 

for each sample from each city, plus a supplementary 

dataset with swab places, sequencing technology, DNA 

extraction and amplification, samples names, etc. A 

bioinformatics analysis with quality of the reads 

filtrations was conducted in order to improve OTU 

picking with QIIME (Caporaso, Kuczynski et al. 2010) 

and taxonomical classification and to shrink some 

large FASTQ files. The raw read counts, generated with 

QIIME, were grouped at the taxonomical level “Order” 

to generate a matrix of OTUs counts for the three 

cities. The number of distinct OTUs for each city 

including common OTUs is represented in a Venn 

diagram (Figure 1). The rest of the statistical analysis 

is carried out on the basis of 16 common OTUs finding 

additional patterns in the relative abundance 

distinguishing the cities that are not as obvious as the 

Figure 1: Summary of abundant OTUs found 
across all three cities and the relative 
contribution of each city reflected as the area of 
each circle.  
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presence of city-specific OTUs. Other aspects of bio-diversity beyond what is immediate from 

Figure 1 (such that Sacramento samples exhibited most biodiversity) were not investigated further. 

2.1 Boston Dataset 

This dataset consisted of a total of 141 samples ranging from 1 Mbp to 11 Gbp single read Illumina 

data. The majority of the samples (117 Amplicon samples) were target sequenced after PCR 

amplification and the rest were whole genome shotgun (WGS) sequenced. Moreover, a small 

fraction of the amplicon samples did not effectively contribute to OTU counts, and hence they were 

removed from the analyses. Ultimately a total of 134 samples were included in further downstream 

analyses. 

2.2 New York Dataset 

A total 1,572 WGS samples were collected at New York ranging from 0 Mbp to 19 Gbp of Illumina 

sequence data. From the subset of samples, which contribute to the OTU counts, we randomly 

chose 280 samples in order to keep the computational burden in check. 

2.3 Sacramento Dataset 

Six locations were sampled three times each on different surfaces for a total of 18 sequenced 

samples ranging from 2.8 to 3.4 Gbp. All the samples contained enough sequencing data to 

positively contribute to OTU counts and therefore were included in all the analyses. 

3 Statistical Analyses 

We used OTU counts for each city as starting point for the statistical analyses. The counts were 

then normalized to counts per million for each city before combining them in a single dataset 

(Formula 1) (Law, Chen et al. 2014).  

Formula 1: OTU proportions calculated for each sample (pgi), where rgi is the gth OTU count 
for the ith sample. N is the number of OTU categories. Ri is the OTU mean of the ith sample 𝑝𝑔𝑖 = 𝑙𝑜𝑔2 (

𝑟𝑔𝑖 + 0.5

𝑁𝑅𝑖 + 1
106) 

The proceeding statistical analysis was done in multiple stages. The first was a PCA analysis, which 

also served as a proof that the normalized and transformed OTUs counts carry strong enough 

signals. The second was to build a statistical classifier, which can produce a well defined rule (e.g., 

a machine) in order to decode the city of origin from the OTU profiles of a sample. To this end, we 

used three well regarded classifiers, all 

within the R environment, and compared 

the findings. Finally, an association 

network analysis was conducted in order 

to assess how the OUT abundances vary 

jointly across the cities. 

3.1 PCA Analysis 

Our PCA analysis shows that the first 

principal component is responsible for 

54.7% of the total variation of the data 

and that the second component explains 

9.3% of the remaining variation (see 

Figure 2). Additional review of the 

remaining eigenvalues revealed that PC3 

is still highly relevant with 8.8% of the 

total variance explained (3D plot not 

Figure 2: PCA Bi-plot of results showing clustering for Boston, 
New York and Sacramento normalized OTU counts per million 
and importance of taxonomical levels relative to the separation 
of the three cities. 
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shown). Figure 2 also shows a high correlation of 6 taxonomical orders with PC1 that have low to 

no correlation with PC2, which apparently makes them more important for Sacramento. With the 

exception of these orders, all other show similar contributions to both PC1 and PC2. As seen on 

Figure 2 the order Lactobacillales has the highest correlation with PC2 and an observable alignment 

with Boston and New York samples (both major ellipses axes), suggesting both cities share a 

common bacterial signature for the species of this “order”. The relative importance of the order 

Lactobacillales signature for Boston and New York was also confirmed as a partial result from 

Random Forest classifier (result not shown in this extended abstract).  

3.2 Classification Analysis 

Accurately predicting the origin of 

a sample on the basis of bacterial 

metagenomics in a robust fashion 

is our main objective of this work. 

We used three different classifiers 

to address this problem: 

randomForest (Breiman 2001),  

ensemble (Datta, Pihur et al. 

2010), and the support vector 

machine (SVM) (Boser, Guyon et 

al. 1992).  

The Random Forest (RF) classifier 

has improved classification 

accuracy as result of choosing 

vectors randomly and 

independently with a positive 

impact on the growth of each tree 

within the ensemble. This 

algorithm is robust to over-fitting, 

computationally efficient and 

calculates estimates for variable 

importance and internal error (Breiman 2001, Poona, van Niekerk et al. 2016). RF was 

implemented with 10 variables (OTUs), randomly chosen at each split, with 1000 threes. Results 

showed an estimated error rate of 6.93% on the classification of three cities which is rather 

remarkable given that we are not using any city specific OTUs (i.e., one that was not observed 

across all cities). The rates of partial classification errors for Boston, New York and Sacramento 

were 16.3%, 2.5% and 5.5%, respectively.  

Next we describe the results of the ensemble classifier. As the name suggests, it is based on a 

number of individual (or component) classifiers. However, it is restricted to binary classifications, 

so we separated the dataset into three pairwise sets. For each pairwise comparison the analysis 

was conducted on a 2-fold training-test cross validation run with 100 iterations. The corresponding 

publicly available R-code internally compares results of the ensemble classifier (EC) with the 

component classification methods. In particular, both RF and SVM are amongst the component 

classifiers used within ensemble. For all three pairwise comparisons, EC and RF were highly 

effective in terms of overall accuracy, sensitivity, specificity and AUC (area under the curve); see 

Figure 3 for Boston versus New York. Results for Sacramento pairwise comparisons against Boston 

and New York showed that all these measures were even higher and close to the maximum for all 

three, especially, for RF and ensemble; the further details are not reported here. 

3.3 Differential abundance 

Analysis of variance of normalized abundance for each city showed significant variation among 

cities (p-value<2.2e-16). Additionally, Tukey pairwise comparisons, showed significant differences 

Figure 3: Ensemble Package results for Boston – New York pairwise 
classification. Accuracy, Sensitivity, Specificity and AUC for three 
classifiers; Ensemble Classifier, Random Forest and Support Vector 
Machine 
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for all three pairwise comparisons. Sacramento is the most significantly different city in terms of 

normalized OTUs as p-values of both comparisons with Boston and New York, respectively, were 

largely smaller than the p-value of Boston and New York test (p-value=0.0008). The ANOVA also 

showed a highly significant interaction between City and OTUs (p-value<2.2e-16). 

3.4 Network Analysis 

Network construction is often used in the context of gene-gene, gene-protein or protein-protein 

association/interaction networks (Gill, Datta et al. 2010). However, one may use the correlation of 

the transformed and normalized OTU counts to construct a “co-abundance” network. In this study, 

we applied Gill et al.’s strategy to identify differential structures and connectivity of bacterial 

fingerprints across three different cities. Networks are presented in Figure 4, purposely placed 

geographically from west on the left to the east on the right. Sacramento showed a centralized 

network centered on “order” Pseudomonadales, which morphs into a decentralized network for New 

York. In the middle Boston network as a transitional stage between both coastal cities. Further 

review of Boston and New York features revealed that the central “order” Sphingomonadales and 

Rhizobiales both belong to the same taxonomical “class” of Alphaproteobacteria, which might 

reflect that both cities share common bacterial fingerprint due to geographical proximity. On a 

close look at bottom-left nodes for the east coast cities networks there is a distinctive sub-cluster 

of orders that belong to the “class” Gammaproteobacteria, which is not shown on Sacramento since 

its centralized network doesn’t allow these interconnected edges. 

4 Discussion 

It has been well established that WGS metagenomics can fail to detect rare species since DNA is 

not sequenced with high depth as result of its rarity (Kalyuzhnaya, Lapidus et al. 2008, Shah, Tang 

et al. 2011). Nevertheless, this was not an issue for the development of this work since our main 

objective was to determine the common bacterial composition of the three cities and use this data 

to predict the source of origin of a specific sample. Two of the three classifiers tested were highly 

effective in accurately predicting the source city from the samples in the two-class analysis.  

It is fair to say that a variety of statistical and machine learning of methods showed distinct and 

consistent bacterial signatures amongst the three cities. It might be possible to develop these into 

an identification tool that may have applications in forensic science, among others. 

This work also includes a novel application of network analysis in revealing city signatures which 

had explanations in terms of their geographical proximity. 

Figure 4: Visual networks discovered on three cities based on bacterial fingerprints from 16 common OTUs discovered across 
all cities. A) Sacramento, CA, B) Boston, MA and C) New York, NY 

 A)            B)           C) 
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